Extensions 1→N→G→Q→1 with N=C22 and Q=C4×C3⋊S3

Direct product G=N×Q with N=C22 and Q=C4×C3⋊S3
dρLabelID
C22×C4×C3⋊S3144C2^2xC4xC3:S3288,1004

Semidirect products G=N:Q with N=C22 and Q=C4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C22⋊(C4×C3⋊S3) = C4×C3⋊S4φ: C4×C3⋊S3/C12S3 ⊆ Aut C22366C2^2:(C4xC3:S3)288,908
C222(C4×C3⋊S3) = C62.225C23φ: C4×C3⋊S3/C3⋊Dic3C2 ⊆ Aut C22144C2^2:2(C4xC3:S3)288,738
C223(C4×C3⋊S3) = C4×C327D4φ: C4×C3⋊S3/C3×C12C2 ⊆ Aut C22144C2^2:3(C4xC3:S3)288,785
C224(C4×C3⋊S3) = C22⋊C4×C3⋊S3φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2:4(C4xC3:S3)288,737

Non-split extensions G=N.Q with N=C22 and Q=C4×C3⋊S3
extensionφ:Q→Aut NdρLabelID
C22.1(C4×C3⋊S3) = C24.47D6φ: C4×C3⋊S3/C3⋊Dic3C2 ⊆ Aut C22144C2^2.1(C4xC3:S3)288,764
C22.2(C4×C3⋊S3) = C24.95D6φ: C4×C3⋊S3/C3×C12C2 ⊆ Aut C22144C2^2.2(C4xC3:S3)288,758
C22.3(C4×C3⋊S3) = C62.110D4φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.3(C4xC3:S3)288,281
C22.4(C4×C3⋊S3) = C12.19D12φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.4(C4xC3:S3)288,298
C22.5(C4×C3⋊S3) = C12.20D12φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C22144C2^2.5(C4xC3:S3)288,299
C22.6(C4×C3⋊S3) = C62.221C23φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C22144C2^2.6(C4xC3:S3)288,734
C22.7(C4×C3⋊S3) = M4(2)×C3⋊S3φ: C4×C3⋊S3/C2×C3⋊S3C2 ⊆ Aut C2272C2^2.7(C4xC3:S3)288,763
C22.8(C4×C3⋊S3) = C8×C3⋊Dic3central extension (φ=1)288C2^2.8(C4xC3:S3)288,288
C22.9(C4×C3⋊S3) = C12.30Dic6central extension (φ=1)288C2^2.9(C4xC3:S3)288,289
C22.10(C4×C3⋊S3) = C24⋊Dic3central extension (φ=1)288C2^2.10(C4xC3:S3)288,290
C22.11(C4×C3⋊S3) = C12.60D12central extension (φ=1)144C2^2.11(C4xC3:S3)288,295
C22.12(C4×C3⋊S3) = C62.15Q8central extension (φ=1)288C2^2.12(C4xC3:S3)288,306
C22.13(C4×C3⋊S3) = C2×C8×C3⋊S3central extension (φ=1)144C2^2.13(C4xC3:S3)288,756
C22.14(C4×C3⋊S3) = C2×C24⋊S3central extension (φ=1)144C2^2.14(C4xC3:S3)288,757
C22.15(C4×C3⋊S3) = C2×C4×C3⋊Dic3central extension (φ=1)288C2^2.15(C4xC3:S3)288,779
C22.16(C4×C3⋊S3) = C2×C6.Dic6central extension (φ=1)288C2^2.16(C4xC3:S3)288,780
C22.17(C4×C3⋊S3) = C2×C6.11D12central extension (φ=1)144C2^2.17(C4xC3:S3)288,784

׿
×
𝔽